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ABSTRACT

If the unit vector x in KY has a probability density proportional

i SR s G a0

20 exp k u°X , Or exp nc(u_‘_x')2 » then the statistical theory for x depends

3 largely upon the logarithmic derivatives Aq(lc) and Bq(nc) of
1 1 2
. <t(1-t%)Vat and A Kt (1-t?)Vat

where v=(q-3)/2 . This paper gives a self-contained study of the functions

J Aq(nc) ’ Bq(n) » of the computational problems of calculating these functions, of
’ solving y-Aq_(x) and y-Bq(nc) ,» and of finding the variance stabilizing trans-
formations f"A’(nc)"dk . I‘B’(n)”dk are also discussed.

: Key words: Fisher-von Mises distribution, Scheidegger-Watson distribution,
power series, asymptotic expansions, variance stabilizing
transformations, Bessel functions, Kummer functions, Riccati equation.
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1. INTRODUCTION
Two probability densities on the surface Q. of the unit ball in R

q
are given by -
fl(x) = aa(n)'l exp k u°x (1.1)
-1 o 2
fox) = b;(n) exp x{u’x) (1.2)

when u’x 1s the scalar product of the two unit vectors x and u . u fis
called the modal direction and x a concentration parameter. In (1.1) «x20 .
In (1.2), x may be any real number. If «+0 either density becomes uniform.

The statistical theory of (1.1), the Fisher-von Mises distribution, has
been studied most recently by Watson (1981a, 1981b). The statistical theory of
(1.2), the Scheidegger-Watson distribution, has been studied for general q in
Watson (1981c). It is found that the theory turns upon

Aq(x) = aa‘(x)/a;(K) R (1.3)
Bq(r) = ba‘(x)/ba(x) . (1.4)

a and ba can be simplified by

writing x = tu + (l-tz)ks where t = u“x , and £ {s a unit vector orthogonal
to u . Then, writing

respectively. The integral definitions of a

wy = area of a = V20 (ar2) (1.5)

we have

la(n) = ”h-l'q(‘) » b3lx) = Wq-1 bg(x)
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i“; where 5
‘;:‘ l -
1 Cagle) = £ ety 2 (1.6) =
3 : -1 |
§ 1.2
* bix) = s &t (1-¢2)(93)/24 | (1.7)

% . q -1

Y and

i

;i Aq(r) = ‘é(”’/’q(”) R Bq(n) = ba(x)/bq(x) (1.8)

e e

The distribution (1.1) originated in Statistical Physics with Langevin's

et i

work on magnetism. (Our nomenclature refers only to the first uses of (1.1) for
i statistical inference.) Dyson, Lieb and Simon (1978) in proving the existence
of spontaneous magnetization at sufficiently low temperatures needed some properties

of log aq(x) . Suppose h(y) 1is defined by

h(y) = log / exp y”x du(x)

%
] E where u(x) 1is any measure on nq . Then h(y) 1s a convex function of y .
; ‘ If ¢ {s the largest eigen value of [azh/ayiay l, -%'qy‘y + h(y) 1s concave

1

fn y. If u fis the uniform measure on Q_, c=q ~ , a proof of which is given

H t q
§ below. Their first result is basic for Laplace transforms -- see e.g. Barndorff-
i Nielsen (1978).

; § ‘ Schou (1978) gave some properties of and expansions for A (x) by

5 . recognizing that aq(n) is proportional ](qIZ)-l ’ (x)n'(Q/z)'l and using the
properties of the modified Bessel function of the first kind, Xv(x) . MWatson
; (1956) gave some results on Bq(x) » Q=3 .
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We will derive all the properties of Aq(x) (Section 2) and Bq(x)
(Section 3) directly, rather than as the ratios aa/a . b&/b . More properties
and more teims in the expansions will be given than heretofore. Furthermore
in practice one needs to be able to compute, any q and « , A (n) » B (n) .
solve the equations y = A (x) »y*=8 (n) and to apply the variance stabi11:1ng
transformutfons (derived in Watson 1981a. 1981b) gq(x) - I A‘(x)kdk ,

h (x) = f B‘(x)*hk numerically. These matters are discussed in Section 4.

Hh11e we have wished to emphasize that it s A  and B_ rather than

q q

aq and bq which matter, we have for completeness included all known properties

of the functions aq and bq . The former is associated with the modified

Bessel function of the first kind I,(2) and the latter to the less well known

Kummer function of the first kind M(a,b,2) .

PRE—
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2. The functigns ang 2 Aq(q and its inverse.

Consider the functions of x>0 . >
‘_ 1 - :
8(x) -4 <t(1-2)(9-3)/24 | 452, (2.1)

Aq(at) = la(lt)/lq(l() . (2.2)

For the applications now envisaged q 1is integer 32 but the following results

are true for real q22 .

It is clear that if q,>qQ, , 0<a_(x)<a_(x) . It is simpler to work
1772 9 %
with

Yy(x) = ag(k) v = (g-3)/23-% , (2.3)
M) = yolk)/y (k) = Ag(x) ' (2.4)
Examination of
¥ (k) = _f: e<t(1-t?)Vat
shows.that

0<y (k) Sy, (x) (2.5)

whence

och(.:) =M, (x)<1 (2.6)

Elementary manipulations show that

y\‘o'ﬂﬁ)”wl » (v>-1), (2.7)
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ky, = ~(2tl)y, + vy, 4 » (v>0) , (2.8)

ryS T+ 2(vHl)yg -y, =0, (v3-y) . (2.9) ."

It may be verified that (2.9) has a solution proportional to I, (x) (V)
whence

a,(k) = (2)Y2 1) () V2 (2.10)

Here Iv(x) is the modified Bessel function of the first kind as defined in
Watson (1952). Thus as k-0,

a (k) = (2m)¥/2 /21 ; 9)a/2-1¢2r 2.11
g = () - (2.11)

while as x+o ,

aq(uc) - (Zﬂ)Q/Z-l x(q'3)/2 e“(1 + O(K-l)) (2.12)
Since

A;(x) = az/ag - (a;/aq)z , (2.13)

3 < 8

it follows that
2
2 . 2.14
Aq(n) + Aq(vc) <1 (2.14)

Using the Cauchy inequality, aa‘aq>(aa)2 s §n (2.13) and the result of Dyson,
Liedb and Simon (1978), we have '

oq;(x) <1/q (2.15)
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Returning the probabilistic background, t=u“x where x has the
distribution (1) so that

. &

Aq(x) - Et , (2.16)
A 2 2
q k) =Et” - (Et)"=var t, (2.17)

so that (2.6) and (2.15) are statistically obvious. For Aa(z) =vart will be a
maximum when x=0 because of (2.18) below. It is then equal to 1/q by a direct

easy calculation. Further since
‘aoo allal al 3
Alk) = a— -3 e 2y,
q » lq q

3 2

= Et” - 3 Et

Et + Z(Et)3 .

= E(t-Et)° ,

so from the evident skewness of the distributfon of t for x>0 it follows that

Aa‘(k) <0 . 4 (2.18)

Thus the function Aq(x) is non-decreasing and convex on (0,») taking its

minimum at «x=0 and maximum as x+» 9in the range [0,11 . While we will not
want Aq(x) for negative x , it is helpful to observe that Ah(‘) is an odd
function of « . It {is eesy to show that Aq.Aa.A;‘ sess are the successive
cunulants of t=u“x , & fact which is used in Watson (1981d) to derive Edgeworth
expansions for certain 1imiting distributions.

Integrating aa’ by parts and using (2.3), we find that Ah(‘) satisfies

.

the Riccat! equation
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s = - 2 - ﬂ
Aq,(x) 1 Aq(lt) - Aq(lc) ’ (2.19)

as found via Bessel functions by Schou (1978). Similar manipulations show that

A -2
Aqtx) i e ol L, (433) , (2.20)

as in Schou (1978)(Al). By (2.6), (2.15), and (2.8) it follows that

A&(-) =0, Aq(-») =] (2.21)

Inspection of Aq(n) as k+0 shows Aq(o) =0 so
» sl =
Aq(-) q° Ah(O) 0 (2.22)
We now give more detailed expansions for Aqlx) as x+0 and k+« by solving

(2.19). The difference equation will be used later to suggest how to tabulate

Aq(r) for various values of q .

For q=3 , there is a simple explicit formula
As(l() = coth k - k! (2.23)
For q=2 , we may write
Ayli) = 1,(e)/ 1 (k) (2.24)

since generally

Ah(" - IQ/2+1(K)/IQ/2'1(K’ (2.2")

For q=2 , the zeros of lo nearest to the origin are at :2.411 (approx.). For
q=3 , the 2eros of 11/2 nearest to the origin are at 23.811 (approx.). These
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comments help to define the radius of convergence of the series expansion (2.25) ;
below.
For- k+0 , we may substitute 4k + a3n<3 + asxs +... for the (odd)
function Aq(nc) in (2.19). We then find that
1 1 3 2 5 7
A(n)'-x--z-——x + ———— " + 0(x") (2.25)
U9 o¥(qr2) q>(q+2)(q+4)

where the first two terms agree with Schou (1978).
For «k-+e , we may substitute a series in powers of x'l in (2.19) and

find that

Aq(")'l'gil %«p-(S._I)éSﬁ :12.

+ {9-1)(g-3 ;13- +0(;1¢) (2.26)

where the first three terms agree with Schou (1978). For q=3 the terms in x’z

ety T SN

and 3 are zero. But from (2.23), we may write

Ay(x) = (1 -1 4 8L g2y oo2¢)71 (2.27)

1

$O we see that Aa(x) - 1 += {s exponentially smali.

From the form of (1) ft fs obvious that maximum l1ikelthood leads to
equations for x of the form y = A(x) o that we need «x = A;l(y) for all
y in [0,1]) . The equation (2.19) can be rewritten

{1y - (-} G = (2.28)

Since the inverse function will also be odd we may put « = v+ |3y3 ...
in (2.28) for y small. We find then, as y+0,
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€= ay+ gz’ + raftedy ¥ + 00) (2.29)

Alternatively we could revert the series (2.25) to find (2.29). To find x when
y 1s near unity we may revert (2.26) using 2 = 1-y = 1-Aq(.<) or set z = l-y
in (2.19) and solve for a series in inverse powers of 2z . Either way we find

that the solutionof y = Aq(x) for y near unity is defined by

1 2 -3 2 -3 3 4
L-Luy &y aw +ﬁ_—1?u-y) + 0((1-9)") (2.30)

The case q=3 1is again special but (2.27) yields
La(iey) +2e™

% ~(ley) 4 2 exp - (l-y)'1 . (2.31)
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3. The functions b (x B (x) and its inverse.

Here we consider the functions

: 1 .2 '
by(k) = zy(c) = 5 € (1-t2)Vat (3.1)
-1

VR LR

Bq(nc) = Nv(lt) = bc‘llbq = Z;/zv . (3.2)

where v=(q-3)/23-% and ~w<k<w ,
The functions zv(r) , bq(nc) and their successive derivatives form

] ' descending sequences because |t|<1 . Further

0<bql < qu if 9 >4 .

0z <2 if v, >q
v Vo 1 2

Thus

0< Nv(K) = Bq(l() <1 (3.3)

Elementary calculations show that 1

' 202 -2, » (vo-%) , (3.4) j
3 2 z; vz , - (2v+l)zv , (v30) , (3.5)
% “ 2 257 + (2v43 - X)z7 - 2 =0, (v>-y) . (3.6)
] : In this case we will proceed without identifying and further describing the |

function zv(x) . bq(x) . Details are given in the Appendix.

At e st
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4
3
% From Cauchy's fnequality and
; - a h*” - - 2
i bq () < bq(x) .
} it follows that
; 0 <B;(x) < 1 - Bx) (3.8)
]
\ 1
3 1f the random vector x has the distribution (2) and u = (u‘x)2 ,
then 1>Eu»Eu?>...>0 and
| Bq(x) = Eu , (3.9)
' . 2 2
Bq(n) = Eu® - (Eu)® = var u (3.10)
B;(e) = Eu® - EuEu - 26u(Eu?-(E)?) = E(u-Ew) . (3.11) ;
From the skewness of the distribution of u 1t follows that
B:“(K) 20 (x<0) Ba'(x) €0 (x20) (3.12)
Thus Bq(x) is non-decreasing and concave on (-=,0) , convex on (0,=) , taking :
its minimum at -=» and its maximum at += {in the range [0,1] .
If we put «=0 1n (3.4), and in (3.5) with v+1 dnstead of v , we find

that

I
-

lq(O) =1/q . ' (3.13)

e £ e =t vty e Y O e S P .



Then (3.4) shows that

_§3(0) = 2/a(a¥2) . (3.14) -
From (3.4) and (3.5) we find the recurrence relation

By (k)18 o)) = - i + FE B ,(x) (3.15)

>

Now Bq(x) and Bq-z("’ tend to limits (the same from (3.4)) in 23 s 11 as

q
k+o which (3.15) shows to be
Bq(-) =] (3.16)
Similarly Bq(nc) 1fes in [0 , %] for «x<0 and

sq(-) =0 (3.17)

Finally we note that Bq(n) satisfies the Riccati equation
- 2 B(x) - % Bg(x) * (a-26)8,(x) (3.18)

which holds for q>2 .

To find expansions for Bq(n) as x+0 , x+4= , and -+ -=» , we may
here use either the difference equation (3.15) or the differentfal equation (3.18).
We know of no explicit forms for special values of q but we will discuss the
cases q=2 and q=3 separately. After harder calculations than the last

section we find:

for x-+0
2
B(x) =1+ 2ad) | Hollad) 2, cBlecl)
o) " g 9 (q+2) ) q(q+2){qH) ) q (q+2)(q+6)
2
o Rlaillasd)__, 3, gt (3.19)

q (q+2)(q+4)(q+6)
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f? for k+dw
Ble)=1-%1 1 _ @l L (alMa2) 1,01, (32
. & T3 ST
5
; : for ko
i

A5t B P BN 1 i vy e s et e

Finally we need expansions for the solution of x-Bq(y) for y near
zero, near 1/q and near unity. We may revert the appropriate expansions above
or rewrite (3.18) as

2 dx
{1 -2y + (% - q)y} r: & (3.22)
For a solution when y {is near q'1 . the needs to be changed to
z= _v-q"l . We find
2 2
- +2 _1,_ (q-2 2 .12 .13
. (v-b - Lo8ad) - L2 4oy - 13 (3.23)

As y+1 , c+« and we have

1,2 2 2
& sy (]~ - (1-)
 "(3-T) 1Y) )2 y

i
4
. - ﬂﬁl} (1-9)% + o(1-p)t) (3.24)
- (g-1)
:' : AS y+0 , x+-» and we find
;
! 1 2 _ (9-3)(59-19) 3, o(t
1 -2 2y + 2(g-3)y° - -‘Lu%—ly +0(y") (3.25)
h | The formulas (3.21), (3.26) are unhelpful when gq=3 .
1.
|
¥
; ——
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For q=2 , the gens'lty (2) is proportional to exp x t:os2

6 and has
normalizing constant 6 exp x cosze de when x>0 , the modes are at 6=0,n
while if k<0 , they are at =/2 , 3n/2 . Thus there is no need to use
k<0 --a rotation of #/2 will serve. Further since cosze- %(cosZBﬂ)

¢=20 has the density (1) with a concentration of x/2 . Thus
B,(x) = $(1 + A(§)) (3.26)

It is easily verified that this relation is consistent with A2 satisfying
(2.19) and B2 satisfying (3.18), etc.. Thus we may check {3.19) against
(2.25) and (3.20) against (2.26). In so doing we find that

BZ(K) -%+-§—--1%2-r3+0(|<

5 (3.27)

Our nc3

this device provides a check of it.

term in (3.19) was so complicated that we hesitated to give it, but

For q=3 ,

2 1 .2
<t dt /J'1 <t at

1 2
Bs(‘) -_fl t

If x+-=, set x=-A , A+ . Then setting u = (2)%

A -1
21 B(-2 1-“"," 1--2. L2, (3.28)
A B(=2)n VSRR i A

by noting the relation to the Gaussian and the fact that

X 2 2
1-7 e2/282, X %/ ia

- o /o

Thus (3.28) explains (3.21) 1.e. Ba(n) + (2.:)'1 is exponentially small as k+-= ,
Similarly as x+-» , n’1 + 2y (see (3.25)) is exponentially small.
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4. The computation of Aq('tl 2 qux! and associated functions.

From (2.10) it follows that

[

Aq(lt') = IQ/Z(K) / Iqlz_l(l() . (‘-l) |

Since these modified Bessel functions are tabulated (see e.g. Abramowitz and
Stegun (1964)), Aq(x) may be found for any q and x . To solve y-Aq(x) we
may use Newton's method since (2.19) ,

AZte) = 1 - A:(nc) - 9.-:—1-Aq(n<) . (4.2)

and (4.1) enable us to compute the derivative. Thus hand calculations are not
a problem for Aq(uc) .

To produce tables of the Aq(n) » machine calculations are needed. If
q 1s odd, we may first compute

Ay(k) = coth - ! (4.3)
and then use the recurrence relation (2.20) so that
Agtc) = (AN D - 3¢, ete..

If q 1s odd, we need separate algorithms for Az(nc) and A4(|<) before (2.20)
may be used.

To compute Az(x) - and A‘(n) one may return to the basic definition
and use numerical integration to evaluate aq(x) . aa(.c) for smaller values of
k until the asymptotic expansion (2.26) comes in to force and the ratio becomes
awkward to handle. The latter will not happen if aq(uc) and aa(n) are divided
by the first terms of thefr asymptotic expansions. From (2.10) and the expansion
(Watson (1952)) cf xv"‘) » K+» . we have
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lq‘(r) n (2/6)V 21 < (4.4)

The derivative of (4.4) will be used for 8
If Aq(x) is to be tabulated for a specific q 1t may be best to

integrate the differential equation (4.2) numerically. To start the solution at
k=0 , set

Aq(x) = ¢/q + ca(x) (4.5)

so that a(x) satisfies

a’ = -q° - -"2- - _qu_a_ - cal (4.6)
q

which is well behaved at the origin. Of course a(0)=0 . When ¢ becomes large,
(4.2) should be used directly.

" In Watson (1981a) it 1s shown that the variance stabilizing transformation
for x-estimates is

K
g(x) = 7 (A“(k))S dk . (8.7)

in which the lower terminal is arbitrary. For q=3 we have found it convenient
to start at unity. The table of g(x) 1s then found by numerical integration
using (4.2) and (4.3); 1t {s more accurate for values of x>1 than for k<1 .
Since "s <1 are rare for q=3 1in the applications we have met, this is very
satisfactory. If one regularly dealt with quite large "s as in palacomagnetism,
1t would be satisfactory to tabulate (4.7) by numerical integration with Aahc)
replaced by the derivative of the asymptotic expansion (2.25) and starting at

x=100r 20 .

W T
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Turning now to the computation of Bq(n) » it 1s shown in the Appendix
that

. &

' M(3/2,(q+2)/2 '

where M(a,b,z) 1s one of the Kummer functions. The tabulation most useful for

our purposes is that in Rushton and Lang (1954). It gives both the numerator

and denominator of (4.8) for q=1 (1) 5, x = 0.02 (-02)-1(-1)1(1)10(10)50,100,200.

These tables may be extended to negative x by using Kummer's transformation (A7).
The only known case where (4.8) reduces to more familfar functions is

q=3 , k<0 . By specializing (4.8) or a direct calculation,
- Sl
b3(") = 5 e u “du (x>0) (4.9)
and, setting for k<0, -x=A ,
N u o
b3(|:) = A é‘ e u *du (x<0) (4.10)

Thus when k<0 , "3"" and bs(x) can be found using tables of the incomplete
gamma-function. ‘

To compute Bq(x) for specific qF3 and x , or to make tables, it
seems that the best method is always to integrate the differential equation (3.18).
It may be rewritten as

. 1 g2
Bglx) = - % - B(x) - ({‘- - 1) B,(x) (4.11)

To start the solution it is essential to use (3.19) since (4.11) is badly behaved

for smll « .
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To solve y = Bq(x) » when none of the expansions (3.19), (3.20) and
(3.21) may be used, one must compute Bq( ) and Ba(x) from {4.11).
To firid the variance stabilizing transformation

x )
W) =/ (Ba(k)) dk (4.12)

the range of integration should avoid k=0 1f possible.

. |
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APPENDIX

It was shown in Section 3 that bq(n) satisfied the differential equatfon --

(3.6), or
k b>*(x) + (§ - k) b2(k) -3 b () =0 (A.1)
q q 279

This 1s Kummer's differential equation -- see e.g. Chapter 13 by L.J. Slater in
Abramowitz and Stegun (1964). It is self-adjoint and a confluent form of the
hypergeometric equation with a regular singularity at «=0 and an irregular
singularity at k== . A1l regular solutions at the origin of

2w’ + (b-2)w’” - aw =0 (A.2)

are proportional to

M(a,b,z) = ; (a), i: (A.3)
r=0 ) T

where
(a)r = a(a+l)...(a+r-1)
Since
1 4?2 (q-3)/2
by(x) = ;1 <t (1-t5)\9 dt
the results of Section 1 show that

bq(O) s ﬂq/ﬂiq_l )

= w" %%%’- . (A.4)

o ~Ah YD K ek AT AT 2 e -
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1 ((q-1)/2

i ..b-q(‘) - T(q "(% * % » K) (AoS)' ’

We have already seen a reflection of some of the many recurrence relations
satisfied by M(a,b,z) but not the useful differential property,

;‘;n'_‘ M(a,b,z) = M(a¢n , b+n , 2) (A.6)
or the Kummer transformations

M(a,b,z) = ¢ M(b-a , b , -2) (A.7)

M(14a-b , 2-b , 2) = e* M(1-a , 2-b , -2) (A.8)

The Xummer functifon M 1{is related to the Bessel function Iv which arose in
Section 2 by the formula

M(a,b,z) = e*/2 r(b-a-%)(z/4)%*%

. (2b-22-1) (b-22) (-1)"

REOE Tp-anper (2/2) (A.9)

r=0

For |[z| large,

siva_-a R-1 (a) (1+a-bd -
n(atb,zz - & '_’_.: - {rio _."_(?.,__)L (-2)°" + o(|z] R)}

-b S-1 (b-a)(1-
+ -‘:ﬁ;,-{ ,E: . -‘-—.-:4-(——.)-*- 2%+ o(lzls)} (A.10)

whers the upper sign is taken {f -n/2<arqz<3n/2 , the lower otherwise.
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From (A.5) and (A.6), 1t follows that

__Bq(r) = b;(n) / bq(n)

=4 tog M , /2 , k)

sy e A (A.11)

From (A.11) and (A.7), we see that

. M((g-1)/2,(q+2)/2 .«
oqt-x) = Mtraitiesartet (h.12)

and (A.11) and (A.8) give yet another form for Bq(-x) . (A.5) and (A.9) show
that

-2
- - -(%5=)
bq(n) « o4 D((g-1 quI' 2)/2) /2 ‘i') 9'2-

= (q-2) ((q-2)/2) (-1)"
* ..fo rr: Iq7Wrr la/24r (x/2) . (A.13)

(A.5) and (A.17) show that, as k++4e» ,

bgle) = % T((a-1)/2) " ~(a-1)72

-1 ((g-1)/2).(1/2
gs *

while iIf x+em ,
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i

b(k) = »* r((q-1)/2)(«)¥ )
. R-1 (%) (-(q-1)/2) ..
L. { T r , r (-K"‘r + O(K-R) } (A.IS) .

r=0 r.

The expansions (A.13), (A.14), and (A.15) could be used directly to obtain

the related expansions for Bq(x) . However the procedure used in Section 3 1is

i R g e S TR, I O R DRV

now seen to be much simpler e.g. it does not require this Appendix.
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